Representative Subsets for Big Data Learning using k-NN Graphs

Raghvendra Mall, Vilen Jumutc
Rocco Langone, Johan A.K. Suykens

KU Leuven, ESAT-STADIUS

IEEE BigData 2014
Introduction

- **Choices for predictive models for Big Data Learning are limited.**
- One way is to build fast, scalable learning algorithms supporting parallelization.
- **The other direction is Sampling.**

Advantages & Disadvantages

- Build predictive model on a small representative subset of the data.
- Predictive model has out-of-sample extension property (Alzate & Suykens, IEEE PAMI, 2010), (Mall & Suykens, PAKDD, 2013 & IEEE TNNLS, in press).
- Sampling is used efficiently in large scale kernel based methods, prototype learning, manifold learning methods etc.
- **Probabilistic sampling techniques are non-deterministic leading to large variations in performance.**
Contributions

- Propose a framework that overcomes issues of probabilistic sampling.
- Select representative subsets that retain natural cluster structure in data.
- Compare and evaluate resulting subset with other subset selection techniques for big data learning tasks including classification & clustering.

Proposed Framework

- k-NN = k-Nearest Neighbor
- LSSVM = Least Squares Support Vector Machines (Suykens et al., 2002).
- SD-LSSVM = Subsampled-Dual LSSVM (Mall & Suykens, IEEE TNNLS, in press).
Distributed k-NN Graph Generation Framework

Initial Setup
- Convert Big Data into unweighted and undirected k-NN graph.
- Generating elements of a kernel matrix (Ω) in parallel.
- Similarity between points (nodes) is used as weight of edges in k-NN graph.
- Only top k neighbors of a node are selected in the graph.

RBF kernel matrix

$$\Omega = \begin{pmatrix} K(x_1, x_1) & \ldots & K(x_1, x_N) \\ \vdots & \ddots & \vdots \\ K(x_N, x_1) & \ldots & K(x_N, x_N) \end{pmatrix},$$

(1)

- Computation of the kernel matrix is based on the widely used radial-basis function (RBF), $K(x, y) = \exp(-\frac{||x-y||^2}{2\sigma^2})$.
- Pre-compute σ using Silverman’s Rule of Thumb [6] as $\sigma = \hat{\sigma} N^{-1/(d+4)}$.
Computational Tricks

- A batch cluster-based approach is used for creating kernel matrix.
- For each node a batch subset $\mathcal{D}_p \subset \mathcal{D}$ (big data) is loaded along with the corresponding matrix slice X_p, $p = 1, \ldots, N$.
- Pre-computed means $\mu(X_p)$ and variances $\text{Var}(X_p)$ are used to estimate the final $\hat{\sigma}$ by averaging.
- Map-Reduce setting (Agarwal et al, JMLR, 2014) explained in Figures 1-4 is used to calculate kernel matrix slices $\Omega^{(p)}$ related to \mathcal{D}_p.
- Sort in ascending order the columns of $\Omega^{(p)}$.
- Pick the indices corresponding of the top k values.
- The implementation was done using Julia programming language (http://julialang.org/).
First loading in parallel for the p-th node a subset $\mathcal{D}_p \subset \mathcal{D}$ of the big data and the corresponding matrix slice X_p.

Figure: (1) Loading the data slices
Calculating slices $\Omega^{(p)}$ of the kernel matrix and sorting the columns to map the slices into indices.

Figure: (2) Mapping of the slices
The reduce operation is to pick the top k indices and form the k-NN subgraphs.

Figure: (3) Reducing to k-NN subgraphs
Finally, merge all k-NN subgraphs into an aggregated k-NN graph.

Figure: (4) Creating the k-NN graph
FURS selects several nodes with high degree centrality from different dense regions in the k-NN graph capturing the inherent community structure.

1. Given: A k-NN graph $G(V,E)$.
2. Result: A subset comprising representative nodes whose cardinality is M.
3. Calculate weighted degree of each node by aggregating weights on its edges.
4. Calculate median degree (m) of the network & reject nodes with degree < m.
5. Sort nodes in descending order based on their degree.
6. Select and add node with highest degree to subset S.
7. Deactivate its neighborhood.
8. Remove selected node keeping the topography intact.
9. If all nodes deactivated.
 - Re-activate all nodes.
 - Sort nodes in descending order based on their degree.
10. Repeat Step 5 – 9 till we have selected M nodes.
Figure: Generalization results using different subset selection techniques for the synthetic 4 Gaussians (4G) dataset using a subset of size 285 out of 28,500 points.
Classification Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>(N)</th>
<th>SR</th>
<th>SRE</th>
<th>FURS(_k=10)</th>
<th>FURS(_k=100)</th>
<th>FURS(_k=500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4G</td>
<td>28,500</td>
<td>0.395±0.235</td>
<td>0.898±0.375</td>
<td>0.252±0.023</td>
<td>0.331±0.063</td>
<td>0.414±0.070</td>
</tr>
<tr>
<td>5G</td>
<td>81,000</td>
<td>0.264±0.225</td>
<td>0.298±0.142</td>
<td>0.358±0.296</td>
<td>0.082±0.016</td>
<td>0.086±0.009</td>
</tr>
<tr>
<td>Magic</td>
<td>19,020</td>
<td>25.32±3.913</td>
<td>28.44±4.446</td>
<td>33.07±2.076</td>
<td>31.05±4.143</td>
<td>36.13±3.062</td>
</tr>
<tr>
<td>Shuttle</td>
<td>58,000</td>
<td>2.437±1.104</td>
<td>2.330±0.958</td>
<td>4.223±0.998</td>
<td>1.482±0.600</td>
<td>1.980±0.715</td>
</tr>
<tr>
<td>Skin</td>
<td>245,057</td>
<td>0.578±0.387</td>
<td>0.254±0.078</td>
<td>3.277±1.133</td>
<td>0.494±0.078</td>
<td>0.772±0.080</td>
</tr>
</tbody>
</table>

Table: Averaged generalization errors along with their standard deviations for SD-LSSVM (Mall & Suykens, IEEE TNNLS, in press) model for different subset selection techniques.
Synthetic Clustering Experiment

Figure: Comparison of clustering performance of KSC model for different subset selection techniques on 4G dataset using a subset of size 285 out of 28,500 points.
Table: Comparison of FURS with other subset selection techniques w.r.t. quality metrics Davies-Bouldin (DB) and silhouette (SIL).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Points</th>
<th>M</th>
<th>Random</th>
<th>Rènyi entropy</th>
<th>FURS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DB</td>
<td>SIL</td>
<td></td>
</tr>
<tr>
<td>4G</td>
<td>28,500</td>
<td>285</td>
<td>0.804 ± 0.167</td>
<td>0.667 ± 0.059</td>
<td>2.909 ± 2.820</td>
</tr>
<tr>
<td>5G</td>
<td>81,000</td>
<td>810</td>
<td>2.011 ± 0.998</td>
<td>0.649 ± 0.049</td>
<td>0.885 ± 0.276</td>
</tr>
<tr>
<td>Batch</td>
<td>13,910</td>
<td>139</td>
<td>4.287 ± 0.764</td>
<td>0.503 ± 0.066</td>
<td>3.969 ± 0.783</td>
</tr>
<tr>
<td>House</td>
<td>34,112</td>
<td>342</td>
<td>0.612 ± 0.154</td>
<td>0.679 ± 0.073</td>
<td>0.507 ± 0.028</td>
</tr>
<tr>
<td>Mopsi Finland</td>
<td>13,467</td>
<td>135</td>
<td>0.897 ± 0.935</td>
<td>0.824 ± 0.085</td>
<td>0.526 ± 0.223</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDDCupBio</td>
<td>145,751</td>
<td>1458</td>
<td>2.932 ± 1.205</td>
<td></td>
<td>4.233 ± 1.82</td>
</tr>
<tr>
<td>Power</td>
<td>2,049,280</td>
<td>2,050</td>
<td>2.558 ± 1.374</td>
<td></td>
<td>2.0619 ± 0.760</td>
</tr>
</tbody>
</table>
Conclusion

- Proposed a method to obtain representative subset of the big data.
- Converted the big data into a k-NN graph using a distributed framework.
- Selected representative subset using FURS algorithm.
- Illustrated effectiveness of the selected representative subset for big data classification and clustering tasks.
A. Agarwal, O. Chapelle, M. Dudk, and J. Langford.
A reliable effective terascale linear learning system.

C. Alzate and J.A.K. Suykens.
Multiway spectral clustering with out-of-sample extensions through weighted kernel pca.

R. Mall, R. Langone, and J.A.K. Suykens.
FURS: Fast and unique representative subset selection retaining large scale community structure.

R. Mall and J.A.K. Suykens.
Very sparse LS-SVM Reductions for large scale data.
IEEE Transactions of Neural Networks and Learning Systems, in press.

R. Mall and Johan A.K. Suykens.
Sparse variations to fixed-size least squares support vector machines for large scale data.

B.W. Silverman.
Density Estimation for Statistics and Data Analysis.

Least Squares Support Vector Machines.

T. White.
Hadoop: The Definitive Guide.