Morphological Image Processing

Anoop M. Namboodiri
anoop@iiit.ac.in
Morphological Operations

- Neighbourhood operations carried out in spatial domain
- Based on mathematical morphology
 - set theoretical framework
 - originally for binary images
 - extended for grey scale images
- Applications:
 - extract info about forms and structures
 - shaping and filtering of forms and structures
Morphological Processing

• Consists essentially of two steps:
 • Probe a given object in x[m,n] with a structuring element (se)
 • Find how the se fits with the object
• Information about fit is used to
 • extract info about the form of object; OR
 • change pixel values and shape objects
• Different size & shape of se yields different kinds of info about the object; shapes the regions in different ways
Set Theory Basics

- Union, Intersection
- Complement, Difference
- Subset, Superset, Disjoint Sets

- Reflection: \(\hat{B} = \{ w \mid w = -b, \text{ for } b \in B \} \)

- Translation: \((A)_z = \{ c \mid c = a + z, \text{ for } a \in A \} \)
Examples

(A) \[z = (3,5) \]
Morphological Operations/Algorithms

- Basic Morphological Operations
 - Dilation
 - Erosion
 - Opening
 - Closing
 - Hit-or-Miss Transformation

- Morphological Algorithms

- Extensions to Grayscale
Dilation

- Dilation of A by B: $A \oplus B$

$$A \oplus B = \{z \mid (\hat{B})_z \cap A \neq \Phi\} \quad A \oplus B = \{z \mid [(\hat{B})_z \cap A] \subseteq A\}$$
Dilation: Example

DIP: Monsoon 2003
Dilation: Example

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

DIP: Monsoon 2003
Erosion

- Erosion of A by B: $A \ominus B$

$$A \ominus B = \{ z \mid (B)_z \subseteq A \}.$$
Erosion: Example
Erosion + Dilation
Opening and Closing

- Opening: Erosion followed by Dilation
- Opening A by B: $A \circ B = (A \Theta B) \oplus B$
 - Smoothes Contours, Breaks narrow bridges, Eliminates thin protrusions

- Closing: Dilation followed by Erosion
- Closing A by B: $A \bullet B = (A \oplus B) \Theta B$
 - Smoothing, Closes small holes and channels
Opening: Physical Interpretation

\[A \cdot B = \bigcup \{(B)_z | (B)_z \subseteq A\} \]

DIP: Monsoon 2003
Closing: Physical Interpretation
Opening: Example

Erosion

Dilation

DIP: Monsoon 2003
Closing: Example

Dilation

Erosion

\[A \oplus B = \{ A \lor (A \land B) \} \]

\[A \cdot B = (A \lor B) \land B \]
Example

DIP: Monsoon 2003
Interesting Points

• $A \circ B$ is a subset of A.
• If $C \subseteq D$; then $C \circ B \subseteq D \circ B$.
• $(A \circ B) \circ B = A \circ B$.
• A is a subset of $A \bullet B$.
• If $C \subseteq D$; then $C \bullet B \subseteq D \bullet B$.
• $(A \bullet B) \bullet B = A \bullet B$.
Hit-or-Miss Transform (HMT)

• To detect an object in an image:

• Basic Idea:
 • Use the object as se for erosion of A and detect possible fits.
 • Use the neighborhood of the object as se for erosion of A^c and find over fits.
 • Combine the two to detect exact fits.
HMT: Example

\[
A = X \cup Y \cup Z
\]

\[
W
\]

\[
(W - X)
\]

\[
A^c
\]

\[
A^c \ominus (W - X)
\]

\[
(A \ominus X) \cap (A^c \ominus (W - X))
\]

DIP: Monsoon 2003
Morphological Algorithms

- Boundary Extraction
- Region Filling
- Connected Components
- Convex Hull
- Thinning
- Thickening
- Skeletonization
- Pruning
Boundary Extraction

• Boundary of A is computed as:

\[\beta(A) = A - (A \ominus B) \]
Boundary Extraction: Example
Region Filling

- Fills a region, whose boundary is given as 8-connected neighbours:

\[X_k = (X_{k-1} \oplus B) \cap A^c, \quad k = 1, 2, 3, \ldots \]