CS3500
Computer Graphics
Module: Scan Conversion

P. J. Narayanan
Spring 2009
Graphics in Practice: Summary

- Basic primitives: Points, Lines, Triangles/Polygons.
- Each constructed fundamentally from points.
- Points can be specified in different coordinate systems.

The pipeline of operations on a point is:

1. Modelling
2. View Orientation
3. View Mapping
4. Clipping Viewport
Scan Conversion or Rasterization

- Primitives are defined using points, which have been mapped to the screen coordinates.

- In vector graphics, connect the points using a pen directly.

- In Raster Graphics, we create a discretized image of the whole screen onto the frame buffer first. The image is scanned automatically onto the display periodically.

- This step is called Scan Conversion or Rasterization.
Scan Converting a Point

- The 3D point has been transformed to its screen coordinates \((u, v)\).
- Round the coordinates to frame buffer array indices \((i, j)\).
- Current colour is defined/known. Frame buffer array is initialized to the background colour.
- Perform: \(\text{frameBuf}[i, j] \leftarrow \text{currentColour}\)
- The function \(\text{WritePixel}(x, y, \text{colour})\) does the above.
- If \(\text{PointSize} > 1\), assign the colour to a number of points in the neighbourhood!
Scan Converting a Line

• Identify the grid-points that lie on the line and colour them.

• Problem: Given two end-points on the grid, find the pixels on the line connecting them.

• Incremental algorithm or Digital Differential Analyzer (DDA) algorithm.

• Mid-Point Algorithm
Line on an Integer Grid
Incremental Algorithm

Function DrawLine($x_1, y_1, x_2, y_2, \text{colour}$)

$\Delta x \leftarrow x_2 - x_1, \Delta y \leftarrow y_2 - y_1, \text{slope} \leftarrow \Delta y / \Delta x$

$x \leftarrow x_1, y \leftarrow y_1$

While ($x < x_2$)

WritePixel ($x, \text{round}(y), \text{colour}$)

$x \leftarrow x + 1, y \leftarrow y + \text{slope}$

EndWhile

WritePixel (x_2, y_2, colour)

EndFunction
Points to Consider

- If \(\text{abs}(\text{slope}) > 1 \), step through \(y \) values, adding inverse slopes to \(x \) at each step.

- Simple algorithm, easy to implement.

- Need floating point calculations (add, round), which are expensive.

- Can we do with integer arithmetic only?
 Yes: **Bresenham’s Algorithm**

- We will study a simplified version of it called the **Mid-Point Line Algorithm**.
Two Options at Each Step!
Mid-Point Line Algorithm

- Line equation: \(ax + by + c = 0, \ a > 0. \)
 Let \(0 < \text{slope} = \Delta y / \Delta x = -a/b < 1.0 \)
- \(F(x, y) = ax + by + c > 0 \) for below the line, \(< 0 \) for above.
- \(\text{NE if } d = F(M) > 0; \ E \text{ if } d < 0; \text{ else any!} \)
- \(d_E = F(M_E) = d + a, \ d_{NE} = d + a + b. \)
- Therefore, \(\Delta_E = a, \ \Delta_{NE} = a + b. \)
- Initial value: \(d_0 = F(x_1 + 1, y_1 + \frac{1}{2}) = a + b / 2 \)
- Similar analysis for other slopes. Eight cases in total.
Pseudocode

Function DrawLine \((l, m, i, j, \text{ colour})\)

\[
\begin{align*}
 a &\leftarrow j - m, \; b \leftarrow (l - i), \; x \leftarrow l, \; y \leftarrow m \\
 d &\leftarrow 2a + b, \; \Delta_E \leftarrow 2a, \; \Delta_{NE} \leftarrow 2(a + b) \\
\end{align*}
\]

While \((x < i)\)

\[
\begin{align*}
 \text{WritePixel}(x, y, \text{ colour}) \\
 \text{if } (d < 0) \quad \text{// East} \\
 \quad d \leftarrow d + \Delta_E, \; x \leftarrow x + 1 \\
 \text{else} \quad \text{// North-East} \\
 \quad d \leftarrow d + \Delta_{NE}, \; x \leftarrow x + 1, \; y \leftarrow y + 1 \\
\end{align*}
\]

EndWhile

\[
\begin{align*}
 \text{WritePixel}(i, j, \text{ colour}) \\
\end{align*}
\]

EndFunction
Example: \((10, 10)\) to \((20, 17)\)

\[F(x, y) = 7x - 10y + 30, \quad a = 7, \quad b = -10 \]
\[d_0 = 2 \times 7 - 10 = 4, \quad \Delta_E = 2 \times 7 = 14, \quad \Delta_{NE} = -6 \]

\[\begin{align*}
 d > 0 &: \text{NE} (11, 11), \quad d = 4 + (-6) = -2 \\
 d < 0 &: \text{E} (12, 11), \quad d = -2 + 14 = 12 \\
 d > 0 &: \text{NE} (13, 12), \quad d = 12 + (-6) = 6 \\
 d > 0 &: \text{NE} (14, 13), \quad d = 6 + (-6) = 0 \\
 d = 0 &: \text{E} (15, 13), \quad d = 0 + 14 = 14 \\
 d > 0 &: \text{NE} (16, 14), \quad d = 14 + (-6) = 8 \\
\end{align*} \]

Later, \text{NE} (17, 15), \text{NE} (18, 16), \text{E} (19, 16), \text{NE} (20, 17).
Scan Converting Circles

- Need to consider only with centre at origin: \(x^2 + y^2 = r^2 \).
- For arbitrary centre, add \((x_c, y_c)\) to each point.
- 8-way symmetry: Only an eighth of the circle need to be scan converted!
- If \((x, y)\) on circle, \((\pm x, \pm y), (\pm y, \pm x)\) are also on the circle!
- Easy way: \(y = \sqrt{r^2 - x^2} \), but floating point calculations!
Back to Two Points??

- Choice between E and SE neighbours between the vertical and the 45 degree lines.
Mid-Point Circle Algorithm

- Circle equation: \(x^2 + y^2 - r^2 = 0 \)

- \(F(x, y) = x^2 + y^2 - r^2 < 0 \) for inside circle, \(> 0 \) for outside.

- **SE** if \(d = F(M) > 0 \); **E** if \(d < 0 \); else any!

- \(d_E = F(M_E) = d + 2x + 3, \quad d_{SE} = d + 2(x - y) + 5 \).

- Therefore, \(\Delta_E = 2x + 3, \quad \Delta_{SE} = 2(x - y) + 5 \).

- Initial value: \(d_0 = F(1, r - \frac{1}{2}) = \frac{5}{4} - r \)
Function DrawCircle \((r, \text{colour})\)
\[
x \leftarrow 0, \quad y \leftarrow r, \quad d \leftarrow 1 - r
\]
CirclePoints \((x, y, \text{colour})\)
While \((x < y)\)
\[
\text{if } (d < 0) \quad \text{// East}
\quad d \leftarrow d + 2 \times x + 3, \quad x \leftarrow x + 1
\]
\[
\text{else} \quad \text{// South-East}
\quad d \leftarrow d + 2 \times (x - y) + 5, \quad x \leftarrow x + 1, \quad y \leftarrow y - 1
\]
CirclePoints \((x, y, \text{colour})\)
EndWhile
EndFunction
Eliminate Multiplication?

- **Current selection is E:** What are the new \(\Delta \)'s?
 \[
 \Delta'_E = 2(x + 1) + 3 = \Delta_E + 2 \\
 \Delta'_\text{SE} = 2(x + 1 - y) + 5 = \Delta_{\text{SE}} + 2
 \]

- **Current selection is SE:** What are the new \(\Delta \)'s?
 \[
 \Delta'_E = 2(x + 1) + 3 = \Delta_E + 2 \\
 \Delta'_\text{SE} = 2(x + 1 - (y - 1)) + 5 = \Delta_{\text{SE}} + 4
 \]

- if \((d < 0)\) \ // East
 \[
 d \leftarrow d + \Delta_E, \quad \Delta_E += 2, \quad \Delta_{\text{SE}} += 2, \quad x++
 \]

 else \ // South-East
 \[
 d \leftarrow d + \Delta_{\text{SE}}, \quad \Delta_E += 2, \quad \Delta_{\text{SE}} += 4, \quad x++, \quad y = y - 1
 \]
Patterned Line

- Represent the pattern as an array of booleans/bits, say, 16 pixels long.
- Fill first half with 1 and rest with 0 for dashed lines.
- Perform `WritePixel(x, y)` only if pattern bit is a 1.

```plaintext
if (pattern[i]) WritePixel(x, y)
```

where `i` is an index variable starting with 0 giving the ordinal number (modulo 16) of the pixel from starting point.
Shared Points/Edges

- It is common to have points common between two lines and edges between two polygons.
- They will be scan converted twice. Not efficient. Sometimes harmful.
- Solution: Treat the intervals closed on the left and open on the right. \([x_m, x_M) \& [y_m, y_M]\)
- Thus, edges of polygons on the top and right boundaries are not drawn.
Clipping

- Often, many points map to outside the range in the normalized 2D space.

- Think of the FB as an infinite canvas, of which a small rectangular portion is sent to the screen.

- Let’s get greedy: draw only the portion that is visible. That is, **clip** the primitives to a *clip-rectangle*.

- **Scissoring**: Doing scan-conversion and clipping together.
Clipping Points

- Clip rectangle: \((x_m, y_m)\) to \((x_M, y_M)\).

- For \((x, y)\):
 \[x_m \leq x \leq x_M, \quad y_m \leq y \leq y_M\]

- Can use this to clip any primitives: **Scan convert normally. Check above condition before writing the pixel.**

- Simple, but perhaps we do more work than necessary.

- Analytically clip to the rectangle, then scan convert.
Clipping Lines
Intersecting Line Segments

- Infinite line equation: \(ax + by + c = 0 \). Not good for line segments!

- \(P = P_1 + t (P_2 - P_1), \ 0 \leq t \leq 1 \).

- Represent sides of clip-rectangles and lines for clipping this way, with two parameters \(t \) and \(s \). Solve for \(s, t \). Both should be within \([0, 1]\).
Cohen-Sutherland Algorithm

• Identify line segments that can be accepted trivially.

• Identify line segments that can be rejected trivially.

• For the rest, identify the segment that falls within the clip-rectangle.

• For ease of this, assign outcodes to each of the 9 regions.
Bits from left to right:

- $y > y_M$
- $y < y_m$
- $x > x_M$
- $x < x_m$

Region Outcodes
Overall Algorithm

- Accept: \(\text{code1} \mid \text{code0} == 0\)
- Reject: \(\text{code1} \& \text{code0} \neq 0\)
- Else, identify one of the boundaries crossed by the line segment and clip it to the inside.
- Do it in some order, say, TOP, RIGHT, BOTTOM, LEFT.
- We also have: \(\text{TOP} = 1000, \text{BOTTOM} = 0100, \text{LEFT} = 0001, \text{RIGHT} = 0010\)
Intersecting with Right/Top

if (code & RIGHT) // Intersects right boundary
 // Adjust right boundary to the intersection with x_M
 $y \leftarrow y_0 + (y_1 - y_0) \times (x_M - x_0) / (x_1 - x_0)$
 $x \leftarrow x_M$
 ComputeCode(x, y)

if (code & TOP) // Intersects top boundary
 // Adjust top boundary to the intersection with y_M
 $x \leftarrow x_0 + (x_1 - x_0) \times (y_M - y_0) / (y_1 - y_0)$
 $y \leftarrow y_M$
 ComputeCode(x, y)
Whole Algorithm

0 code0 ← ComputeCode(x0, y0), code1 ← ···
1 if (! (code1 | code0)) Accept and Return
2 if (code1 & code0) Reject and Return
3 code ← code1 ? code1 : code0
4 if (code & TOP) Intersect with \(y_M \) line.
5 elsif (code & RIGHT) Intersect with \(x_M \) line.
6 elsif (code & BOTTOM) Intersect with \(y_m \) line.
7 elsif (code & LEFT) Intersect with \(x_m \) line.
8 if (code == code1) Replace EndPoint1.
9 else Replace EndPoint0.
10 Goto step 1.
4 to accept and 3 to reject.
Discussion

- Simple logical operations to check intersections etc.
- Not efficient, as external intersections are not eliminated.
- In the worst case, 3 intersections may be computed and then the line segment could be rejected.
- 4 intersections may be computed before accepting a line segment.
Clipping Polygons

- Restrict drawing/filling of a polygon to the inside of the clip rectangle.
- A convex polygon remains convex after clipping.
- A concave polygon can be clipped to multiple polygons.
- Can perform by intersecting to the four clip edges in turn.
An Example
An Example
Sutherland-Hodgman Algorithm

• **Input:** A list of vertices v_1, v_2, \cdots, v_n. Implied edges from v_i to v_{i+1} and from v_n to v_1.

• **Output:** Another list of vertices giving the clipped polygon.

• **Method:** Clip the entire polygon to the infinite line for each clip edge in turn.

• Four passes, the output of each is a partially clipped polygon used as input to the next.

• Post-processing to eliminate degenerate edges.
Algorithm Detail

- Process edges one by one and clip it to a line.
- Start with the edge $E(v_n, v_1)$.
- Compare the current edge $E(v_{i-1}, v_i)$ with the current clip line. Clip it to lie within the clip rectangle.
- Repeat for the next edge $E(v_i, v_{i+1})$. Till all edges are processed.
- When processing $E(v_{i-1}, v_i)$, treat v_{i-1} as the in vertex and v_i as the out vertex.

CS3500
Scan Conversion
At Each Step ...

- **in** vertex: *s* (already handled). **out** vertex: *p*. Four cases:

```
  In  Out
  s   p
```

```
  In  Out
  s   p
```

```
  In  Out
  p   s
```

```
  In  Out
  p   s
```
Function SuthHodg()

\[
p \leftarrow \text{last(inVertexList)} \quad \text{// Copy, not remove}
\]
\[
\text{while (notEmpty(inVertexList))}
\]
\[
s \leftarrow p, \quad p \leftarrow \text{removeNext(inVertexList)}
\]
\[
\text{if (inside(p, clipBoundary))}
\]
\[
\text{if (inside(s, clipBoundary))}
\]
\[
\text{addToList(p, outVertexList)} \quad \text{// Case 1}
\]
\[
\text{else \ i} \leftarrow \text{intersect(s, p, clipBoundary)} \quad \text{// Case 4}
\]
\[
\text{addToList(i, outVertexList), addToList(p, outVertexList)}
\]
\[
\text{elsif (inside(s, clipBoundary))} \quad \text{// Case 2}
\]
\[
\text{addToList(intersect(s, p, clipBoundary), outVertexList)}
\]
Complete Algorithm

- Invoke SuthHodg() 4 times for each clip edge as clipBoundary.
- The outVertexList after one run becomes the inVertexList for the next.
- Uses list data structures to implement polygons.
- Function inside() determines if a point is in the inside of the clip-boundary. We can define it as “being on the left when looking from first vertex to the second”.
- Can be extended to clip to any convex polygonal region!
Filled Rectangles

- Write to all pixels within the rectangle.

\[
\text{Function FilledRectangle}\left(x_m, x_M, y_m, y_M, \text{colour}\right)
\]

\[
\text{for } x_m \leq x \leq x_M \text{ do}
\]
\[
\text{for } y_m \leq y \leq y_M \text{ do}
\]
\[
\text{WritePixel}\left(x, y, \text{colour}\right)
\]

EndFunction

- How about non-upright rectangles? General polygons?
Filled Polygons

- For each scan line, identify spans of the polygon interior. Strictly interior points only.

- For each scan line, the parity determines if we are inside or outside the polygon. Odd is inside, Even is outside.

- Trick: End-points count towards parity enumeration only if it is a y_{\min} point.

- Span extrema points and other information can be computed during scan conversion. This information is stored in a suitable data structure for the polygon.
Edge Coherence

- If scan line y intersects with an edge E, it is likely that $y + 1$ also does. (Unless intersection is the y_{max} vertex.)

- When moving from y to $y + 1$, the X-coordinate goes from x to $x + 1/m$. $1/m = (x_2 - x_1)/(y_2 - y_1) = \Delta x / \Delta y$

- Store the integer part of x, the numerator (Δx) and the denominator (Δy) of the fraction separately.

- For next scan line, add Δx to numerator. If sum goes $> \Delta y$, increment integer portion, subtract Δy from numerator.
Scan Converting Filled Polygons

- Find intersections of each scan line with polygon edges.
- Sort them in increasing X-coordinates.
- Use parity to find interior spans and fill them.
- Most information can be computed during scan conversion. A list of intersecting polygons stored for each scan line.
- Use edge coherence for the computation otherwise.
Special Concerns

• Fill only strictly interior pixels: Fractions rounded up when even parity, rounded down when odd.

• Intersections at integer pixels: Treat interval closed on left, open on right.

• Intersections at vertices: Count only y_m vertex for parity.

• Horizontal edges: Do not count as y_m!
Filled Polygon Scan Conversion

- Perform all of it together. Each scan line should not be intersected with each polygon edge!

- Edges are known when polygon vertices are mapped to screen coordinates.

- Build up an edge table while that is done.

- Scan conversion is performed in the order of scan lines. Edge coherence can be used; an active edge table can keep track of which edges matter for the current scan line.
Edge Table for a Polygon

- Construct a bucket-sorted table of edges, sorted into buckets of y_m for the edge.

- Each bucket y contains a list of edges with $y = y_m$, in the increasing order of x coordinate of the lower end point.

- Each edge is represented by its y_M for the edge, x of the lower (that is y_m) point, and the slope as a rational number.

- This is the basis for constructing the Active Edge Table to compute the spans.
Active Edge Tables

- Start with the lowest y value and an empty AET.
- Insert edges from bucket y of ET to AET. (They have $y = y_m$ and are sorted on x.)
- Remove edges from AET where y is the y_M point.
- Between pairs of AET entries lie spans. Fill them.
- Compute next point on edge using coherence. (Increment y by 1 and numerator by Δx, etc. Or vice versa)
- Continue above 4 steps till ET and AET are empty.
Active Edge Table: Snapshots

y = 15
AET → 20, 9, −10, 15 → 32, 31, 5, 22

y = 22
AET → 30, 5, 0, 10 → 32, 32, 5, 22

y = 27
AET → 30, 5, 0, 10 → 30, 14, −15, 5 → 32, 24, 15, 7 → 32, 34, 5, 22
Pattern Filling

- A rectangular bit-map with the desired pattern can be used to fill the interior with a pattern.

- If $\text{pattern}(i \mod M, j \mod N)$, draw pixel, else ignore.

- i, j are row, col indices. Lower left corner at 0 and 0.

- M, N are the pattern height and width.
Scan Conversion: Summary

- Filling the frame buffer given 2D primitives.
- Convert an analytical description of the basic primitives into pixels on an integer grid in the frame buffer.
- Lines, Polygons, Circles, etc. Filled and unfilled primitives.
- Efficient algorithms required since scan conversion is done repeatedly.
- 2D Scan Conversion is all, even for 3D graphics.
Scan Conversion: Summary

- High level primitives (point, line, polygon) map to window coordinates using transformations.
- Creating the display image on the Frame Buffer is important. Needs to be done efficiently.
- Clipping before filling FB to eliminate futile effort.
- After clipping, line remains line, polygons can become polygons of greater number of sides, etc.
- General polygon algorithm for clipping and scan conversion are necessary.